Serveur d'exploration Melampsora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Internalization of flax rust avirulence proteins into flax and tobacco cells can occur in the absence of the pathogen.

Identifieur interne : 000118 ( Main/Exploration ); précédent : 000117; suivant : 000119

Internalization of flax rust avirulence proteins into flax and tobacco cells can occur in the absence of the pathogen.

Auteurs : Maryam Rafiqi [Australie] ; Pamela H P. Gan ; Michael Ravensdale ; Gregory J. Lawrence ; Jeffrey G. Ellis ; David A. Jones ; Adrienne R. Hardham ; Peter N. Dodds

Source :

RBID : pubmed:20525849

Descripteurs français

English descriptors

Abstract

Translocation of pathogen effector proteins into the host cell cytoplasm is a key determinant for the pathogenicity of many bacterial and oomycete plant pathogens. A number of secreted fungal avirulence (Avr) proteins are also inferred to be delivered into host cells, based on their intracellular recognition by host resistance proteins, including those of flax rust (Melampsora lini). Here, we show by immunolocalization that the flax rust AvrM protein is secreted from haustoria during infection and accumulates in the haustorial wall. Five days after inoculation, the AvrM protein was also detected within the cytoplasm of a proportion of plant cells containing haustoria, confirming its delivery into host cells during infection. Transient expression of secreted AvrL567 and AvrM proteins fused to cerulean fluorescent protein in tobacco (Nicotiana tabacum) and flax cells resulted in intracellular accumulation of the fusion proteins. The rust Avr protein signal peptides were functional in plants and efficiently directed fused cerulean into the secretory pathway. Thus, these secreted effectors are internalized into the plant cell cytosol in the absence of the pathogen, suggesting that they do not require a pathogen-encoded transport mechanism. Uptake of these proteins is dependent on signals in their N-terminal regions, but the primary sequence features of these uptake regions are not conserved between different rust effectors.

DOI: 10.1105/tpc.109.072983
PubMed: 20525849
PubMed Central: PMC2910983


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Internalization of flax rust avirulence proteins into flax and tobacco cells can occur in the absence of the pathogen.</title>
<author>
<name sortKey="Rafiqi, Maryam" sort="Rafiqi, Maryam" uniqKey="Rafiqi M" first="Maryam" last="Rafiqi">Maryam Rafiqi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Science, Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 0200, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Division of Plant Science, Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 0200</wicri:regionArea>
<wicri:noRegion>Australian Capital Territory 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gan, Pamela H P" sort="Gan, Pamela H P" uniqKey="Gan P" first="Pamela H P" last="Gan">Pamela H P. Gan</name>
</author>
<author>
<name sortKey="Ravensdale, Michael" sort="Ravensdale, Michael" uniqKey="Ravensdale M" first="Michael" last="Ravensdale">Michael Ravensdale</name>
</author>
<author>
<name sortKey="Lawrence, Gregory J" sort="Lawrence, Gregory J" uniqKey="Lawrence G" first="Gregory J" last="Lawrence">Gregory J. Lawrence</name>
</author>
<author>
<name sortKey="Ellis, Jeffrey G" sort="Ellis, Jeffrey G" uniqKey="Ellis J" first="Jeffrey G" last="Ellis">Jeffrey G. Ellis</name>
</author>
<author>
<name sortKey="Jones, David A" sort="Jones, David A" uniqKey="Jones D" first="David A" last="Jones">David A. Jones</name>
</author>
<author>
<name sortKey="Hardham, Adrienne R" sort="Hardham, Adrienne R" uniqKey="Hardham A" first="Adrienne R" last="Hardham">Adrienne R. Hardham</name>
</author>
<author>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20525849</idno>
<idno type="pmid">20525849</idno>
<idno type="doi">10.1105/tpc.109.072983</idno>
<idno type="pmc">PMC2910983</idno>
<idno type="wicri:Area/Main/Corpus">000116</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000116</idno>
<idno type="wicri:Area/Main/Curation">000116</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000116</idno>
<idno type="wicri:Area/Main/Exploration">000116</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Internalization of flax rust avirulence proteins into flax and tobacco cells can occur in the absence of the pathogen.</title>
<author>
<name sortKey="Rafiqi, Maryam" sort="Rafiqi, Maryam" uniqKey="Rafiqi M" first="Maryam" last="Rafiqi">Maryam Rafiqi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Plant Science, Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 0200, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Division of Plant Science, Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 0200</wicri:regionArea>
<wicri:noRegion>Australian Capital Territory 0200</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gan, Pamela H P" sort="Gan, Pamela H P" uniqKey="Gan P" first="Pamela H P" last="Gan">Pamela H P. Gan</name>
</author>
<author>
<name sortKey="Ravensdale, Michael" sort="Ravensdale, Michael" uniqKey="Ravensdale M" first="Michael" last="Ravensdale">Michael Ravensdale</name>
</author>
<author>
<name sortKey="Lawrence, Gregory J" sort="Lawrence, Gregory J" uniqKey="Lawrence G" first="Gregory J" last="Lawrence">Gregory J. Lawrence</name>
</author>
<author>
<name sortKey="Ellis, Jeffrey G" sort="Ellis, Jeffrey G" uniqKey="Ellis J" first="Jeffrey G" last="Ellis">Jeffrey G. Ellis</name>
</author>
<author>
<name sortKey="Jones, David A" sort="Jones, David A" uniqKey="Jones D" first="David A" last="Jones">David A. Jones</name>
</author>
<author>
<name sortKey="Hardham, Adrienne R" sort="Hardham, Adrienne R" uniqKey="Hardham A" first="Adrienne R" last="Hardham">Adrienne R. Hardham</name>
</author>
<author>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
</author>
</analytic>
<series>
<title level="j">The Plant cell</title>
<idno type="eISSN">1532-298X</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Basidiomycota (pathogenicity)</term>
<term>Cytoplasm (metabolism)</term>
<term>Flax (immunology)</term>
<term>Flax (microbiology)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Plant Diseases (microbiology)</term>
<term>Protein Sorting Signals (MeSH)</term>
<term>Protein Transport (MeSH)</term>
<term>Tobacco (immunology)</term>
<term>Tobacco (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Basidiomycota (pathogénicité)</term>
<term>Cytoplasme (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Lin (immunologie)</term>
<term>Lin (microbiologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Signaux de triage des protéines (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Tabac (immunologie)</term>
<term>Tabac (microbiologie)</term>
<term>Transport des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Lin</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Flax</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytoplasm</term>
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Lin</term>
<term>Maladies des plantes</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Flax</term>
<term>Plant Diseases</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cytoplasme</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Molecular Sequence Data</term>
<term>Protein Sorting Signals</term>
<term>Protein Transport</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Signaux de triage des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Transport des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Translocation of pathogen effector proteins into the host cell cytoplasm is a key determinant for the pathogenicity of many bacterial and oomycete plant pathogens. A number of secreted fungal avirulence (Avr) proteins are also inferred to be delivered into host cells, based on their intracellular recognition by host resistance proteins, including those of flax rust (Melampsora lini). Here, we show by immunolocalization that the flax rust AvrM protein is secreted from haustoria during infection and accumulates in the haustorial wall. Five days after inoculation, the AvrM protein was also detected within the cytoplasm of a proportion of plant cells containing haustoria, confirming its delivery into host cells during infection. Transient expression of secreted AvrL567 and AvrM proteins fused to cerulean fluorescent protein in tobacco (Nicotiana tabacum) and flax cells resulted in intracellular accumulation of the fusion proteins. The rust Avr protein signal peptides were functional in plants and efficiently directed fused cerulean into the secretory pathway. Thus, these secreted effectors are internalized into the plant cell cytosol in the absence of the pathogen, suggesting that they do not require a pathogen-encoded transport mechanism. Uptake of these proteins is dependent on signals in their N-terminal regions, but the primary sequence features of these uptake regions are not conserved between different rust effectors.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20525849</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>10</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-298X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>22</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>The Plant cell</Title>
<ISOAbbreviation>Plant Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Internalization of flax rust avirulence proteins into flax and tobacco cells can occur in the absence of the pathogen.</ArticleTitle>
<Pagination>
<MedlinePgn>2017-32</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1105/tpc.109.072983</ELocationID>
<Abstract>
<AbstractText>Translocation of pathogen effector proteins into the host cell cytoplasm is a key determinant for the pathogenicity of many bacterial and oomycete plant pathogens. A number of secreted fungal avirulence (Avr) proteins are also inferred to be delivered into host cells, based on their intracellular recognition by host resistance proteins, including those of flax rust (Melampsora lini). Here, we show by immunolocalization that the flax rust AvrM protein is secreted from haustoria during infection and accumulates in the haustorial wall. Five days after inoculation, the AvrM protein was also detected within the cytoplasm of a proportion of plant cells containing haustoria, confirming its delivery into host cells during infection. Transient expression of secreted AvrL567 and AvrM proteins fused to cerulean fluorescent protein in tobacco (Nicotiana tabacum) and flax cells resulted in intracellular accumulation of the fusion proteins. The rust Avr protein signal peptides were functional in plants and efficiently directed fused cerulean into the secretory pathway. Thus, these secreted effectors are internalized into the plant cell cytosol in the absence of the pathogen, suggesting that they do not require a pathogen-encoded transport mechanism. Uptake of these proteins is dependent on signals in their N-terminal regions, but the primary sequence features of these uptake regions are not conserved between different rust effectors.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rafiqi</LastName>
<ForeName>Maryam</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Division of Plant Science, Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, Canberra, Australian Capital Territory 0200, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gan</LastName>
<ForeName>Pamela H P</ForeName>
<Initials>PH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ravensdale</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lawrence</LastName>
<ForeName>Gregory J</ForeName>
<Initials>GJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ellis</LastName>
<ForeName>Jeffrey G</ForeName>
<Initials>JG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jones</LastName>
<ForeName>David A</ForeName>
<Initials>DA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hardham</LastName>
<ForeName>Adrienne R</ForeName>
<Initials>AR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dodds</LastName>
<ForeName>Peter N</ForeName>
<Initials>PN</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM074265</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM074265-01A2</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM074265-01A2</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>06</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell</MedlineTA>
<NlmUniqueID>9208688</NlmUniqueID>
<ISSNLinking>1040-4651</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021382">Protein Sorting Signals</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="Y">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003593" MajorTopicYN="N">Cytoplasm</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019597" MajorTopicYN="N">Flax</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021382" MajorTopicYN="N">Protein Sorting Signals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>6</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>6</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20525849</ArticleId>
<ArticleId IdType="pii">tpc.109.072983</ArticleId>
<ArticleId IdType="doi">10.1105/tpc.109.072983</ArticleId>
<ArticleId IdType="pmc">PMC2910983</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Apr;22(4):411-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19271956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2004 Apr;17(4):394-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15077672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jul;20(7):1930-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Apr 8;269(14):10444-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8144628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2009 Nov;26(11):2499-513</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19633228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2006 May;2(5):e50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16733545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2008 Aug;45 Suppl 1:S63-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18456523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Dec 10;306(5703):1957-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15591208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 2008 Aug;160(2):107-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18534695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2009 Jan;11(1):13-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18783481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Sep;18(9):2402-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16905653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jan;18(1):243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16326930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Jun;58(6):970-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19228334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Sep;19(9):2898-912</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17873095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jun 18;459(7249):945-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19536257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2008 Dec;154(Pt 12):3743-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19047742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Jun;1798(6):1119-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20214875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 1;450(7166):115-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17914356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 24;102(21):7766-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15894622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Sep 3;98(5):651-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10490104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Nov;18(11):1130-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16353548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Mar;21(3):315-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18257681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2006 Jan;14(1):8-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16356717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Mar;16(3):755-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Jan;23(1):49-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19958138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Apr;22(4):1388-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20435900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Apr;21(4):1273-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19357089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Aug 1;19(15):4004-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10921881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2007 Jul;8(7):848-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17587406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1992 Jun;11(6):2345-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1376250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Aug;12(4):399-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19540152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 24;124(4):803-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16497589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 May 8;324(5928):748-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19423815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Aug;11(4):373-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18511334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8888-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2002 May;219(3-4):221-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12099222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1984 Feb 3;223(4635):496-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17781445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:41-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16448329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1984 Aug;3(8):1681-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16453538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Oct;48(2):165-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16965554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4874-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18344324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Apr;22(4):445-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14990965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Dec 10;306(5703):1930-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15591202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pept Sci. 2008 Apr;14(4):477-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17985395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Nov;17(11):3203-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16199615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2009 Mar;10(3):285-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19055692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol Methods. 1988 Apr 6;108(1-2):115-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3127468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1988 Dec 23;55(6):1189-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2849510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jun;17(6):1839-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15894715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Dec 10;306(5703):1934-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15591203</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Dodds, Peter N" sort="Dodds, Peter N" uniqKey="Dodds P" first="Peter N" last="Dodds">Peter N. Dodds</name>
<name sortKey="Ellis, Jeffrey G" sort="Ellis, Jeffrey G" uniqKey="Ellis J" first="Jeffrey G" last="Ellis">Jeffrey G. Ellis</name>
<name sortKey="Gan, Pamela H P" sort="Gan, Pamela H P" uniqKey="Gan P" first="Pamela H P" last="Gan">Pamela H P. Gan</name>
<name sortKey="Hardham, Adrienne R" sort="Hardham, Adrienne R" uniqKey="Hardham A" first="Adrienne R" last="Hardham">Adrienne R. Hardham</name>
<name sortKey="Jones, David A" sort="Jones, David A" uniqKey="Jones D" first="David A" last="Jones">David A. Jones</name>
<name sortKey="Lawrence, Gregory J" sort="Lawrence, Gregory J" uniqKey="Lawrence G" first="Gregory J" last="Lawrence">Gregory J. Lawrence</name>
<name sortKey="Ravensdale, Michael" sort="Ravensdale, Michael" uniqKey="Ravensdale M" first="Michael" last="Ravensdale">Michael Ravensdale</name>
</noCountry>
<country name="Australie">
<noRegion>
<name sortKey="Rafiqi, Maryam" sort="Rafiqi, Maryam" uniqKey="Rafiqi M" first="Maryam" last="Rafiqi">Maryam Rafiqi</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MelampsoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000118 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000118 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MelampsoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20525849
   |texte=   Internalization of flax rust avirulence proteins into flax and tobacco cells can occur in the absence of the pathogen.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20525849" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MelampsoraV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Mon Nov 2 18:19:24 2020. Site generation: Thu Feb 15 23:05:49 2024